Comparisonof Spherical Wavelet Transform (SWT) and Discrete Wavelet
Transform (DWT) features on Mammaographic Images

Sushma S, Latha KC2, Balasubramanian S3, Sridhar R4

Abstract One of the most widely used technology to detect breast cancers used in the primary
diagnosing stage is mammograms. Detection of cancer in initial stages can increase the
probability of prolong patient life and better recovery. Thus, there is high demand for early
identification and diagnosis of breast cancer with the help of mammograms. To increase the
accuracy of diagnosis and image interpretation consistency of healthcare professionals, Cad is
introduced in the field of radiology. Texture based feature extraction strategies are commonly
used for analysis of mammograms. To be particular, wavelets are a favorable choice to texturally
analyze the image. For this purpose, previously discrete wavelets have been utilized, but
spherical wavelets have hardly been utilized for Computer-Aided Diagnosis (CAD) of breast
cancer with the help of mammographic images. In this study, a comparative analysis of the
performance between the features of Spherical Wavelet Transform (SWT) and Discrete Wavelet
Transform (DWT) on the basis of three classification results of malignant, benign and normal
stage was studied. Classification was done with the help of Parzen Classifier (ParzenC), Support
Vector Machines (SVM), Nearest Mean Classifier (NMC), Quadratic Discriminant Classifier
(QDC), and Linear Discriminant Classifier (LDC). The maximum achieved classification
accuracy is 89.90% for SWT and 82.85% for DWT features with combination of SVM classifier.
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1. Introduction

One of the most prevalent non-skin cancer and the leading fatality among women and is
breast cancer (DeSantis et al. 2013). In fact, among all cancer deaths in women, breast cancer
mortality is second highest (Hashemi et al. 2014). At present time, there is no medication
technology that have the potential to cure cancer. However, it is a well-known fact that detection
of cancer in initial stages can increase the probability of prolong patient life and better recovery
(Scharl et al. 2015). That is the reason why doctors, oncologists, and related health care
professionals want to detect breast cancer as early as possible. Nevertheless, there are numerous
issues associated with early detection of the disease. The first tool that is used to detect breast
cancer is mammogram. There is a unique issue associated with this diagnosing tool because of
inter-observer variations that occur when diagnosing breast cancer via mammograms (Masroor et
al. 2016). To overcome this problem, Computer Aided Diagnosis (CAD) is introduced in the
field of radiology. The purpose of introducing CAD in the field of radiography is to increase the
accuracy of diagnosis and image interpretation consistency of healthcare professionals with the
help of computer output as a guidance (Litjens et al. 2015). This is quite possible because a
radiologist interprets the mammogram on the basis of judgments that are subjective to the
radiologist. Moreover, it also helps in diagnosing the masses and microcalcifications that are
usually missed by radiologists because they are not clear in mammograms. Furthermore, it has
been established that inter-observer and intra-observer variability are significant factors in
determining the accuracy of diagnosis (Masroor et al. 2016). Various studies have proven
improvement and positive influence in diagnostic accuracy of radiologists when they used CAD
system (Litjens et al. 2015).

In this study, the classification that is used is illustrated in Figure 1. Although CAD
system is in its rudimentary, evidence have supported the use of CAD system by radiologists
with noticeable success rate (Abbas 2016). Numerous studies have been conducted in the past to
investigate the effectiveness of combination of various techniques. In the work of Murakami, the
overall accuracy rate was over 90 percent, it can be said that the CAD systems are at advanced
stage for breast cancer (Murakami et al. 2013). Nonetheless, there is still room for improvement
because of several factors. For example, the accuracy rates were inspiring in the study of
Murakami et al. (Murakami et al. 2013), but it must be noted also that high accuracy was
achieved in the experiments which used Full-Field Digital Mammograms (FFDM). The highest
accuracy rate was 100% for microcalcification manifestations. However, the accuracy declined
with other types of mammographic appearances and the density of breasts (Murakami et al.
2013). Likewise, Uppal (2016) also conducted a study by using more complicated strategy
including Genetic Programming (GP) based filter, with the combination of DWT features and
Discrete Cosine Transform (DCT) to be used in a CAD system. This technique achieved the
accuracy rate of 96.97%. Hence, we can see that there are various techniques ranging from very
simple to very complex (Uppal 2016).
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Figure 1: Framework used in this study

Since, it is clear that there is a scope for further progression in the primary classification
system, particularly in the phase of feature extraction, we put forward the application of a new
methodology related to feature extraction to be use in analysis of mammographic images.
Initially, Spherical Wavelet Transforms (SWT) was introduced for data analysis and
astronomical image, their potential to retrieve minute information make it appropriate,
specifically for our application. In popular applications, the common use of SWT is yet to be
achieved, particularly in the analysis of medical image. In this field, they might be very
beneficial knowing that they are extremely useful in sharpening the images and filtering off the
noises in addition to the provision of vital information about details that might not be accessible
by using Discrete Wavelet Transforms (DWT).

This study elaborated the advantages of SWT in contrast to DWT features with the help
of mammographic images. Three classes of mammograms are used; malignant, benign, and
normal. In this paper, we consider the features that are extracted by SWT and DWT. For both
these sets, the classification was done distinctly for assessing the performance of SWT and
DWT. The classification was done with the help of Parzen Classifier (ParzenC), Support Vector
Machines (SVM), Nearest Mean Classifier (NMC), Quadratic Discriminant Classifier (QDC),
and Linear Discriminant Classifier (LDC).

2. Materials and Methods

During the experiment, 67 images or mammograms were used. The images were of
patients aged between 46-75 years. There were 37 normal images, 14 benign images, and 16
malignant images. Each image was normalized and preprocessed to counter disparities in
imaging conditions before any processing. For achieving quantitative results with greater



accuracy, the pectoral muscles were removed from all mammograms manually so that only
masses of breast tissues are visible. The mammographic images processed at 1024 X 1680
resolution. Every single image was processed at Mediolateral-oblique (MLO) view and
CranioCaudal (CC) view. Figure 2 presents some samples of mammographic images utilized in
this research.

(A)

Normal Normal

Malignant Malignant
Figure 2: Sample mammograms

2.1 Feature Extraction

To extract texture features from the mammographic images to be studied, two feature
extraction techniques are utilized in this study, namely Spherical Wavelet Transform (SWT) and
Discrete Wavwelet Transform (DWT).

2.2 Spherical Wavelet Transform (SWT)


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527460/figure/fig2-tcrtexpress.2013.600262/

The Spherical Wavelet Transform operates on the phenomenon that original data can be
replicated by sum of the scales. The purpose of this technique is to decrease the redundancy that
is usually present within the traditional DWT. This redundancy results in large data sets due to
which averaging strategies are applied, leading to loss of data. An undecimated isotropic
transform was used to dewvelop SWT. This isotropy has the ability to statistically capture
isotropic features in an isotropic field; thus, it is used in SWT development and is advantageous
for creating a wavelet pyramid. In medical images’ textural feature extraction, this characteristic
of statistically capturing isotropic features can be put to a worthy use, as medical image analysis
utilizing textures is centered on isotropic region extraction.

On a dyadic resolution, the estimates of a mammographic image (I) can be acquired with
the help of scale function ¢l as; co = @lc * f, c1=02—1lc*f,....,cj=p2—jlc*f, where ¢lc  have a cut-
off frequency 27 lcand ¢2—jlcis its rescaled version (Ganesan et al. 2013). With the help of this
function, for each scale j, a low-pass filter hjis described by;
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Correspondingly, on each scale j, a high-pass filter gj can be defied by;
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From above two equations, it is well-established that the filter used for this study can be
lllustrated as;
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The above equation demonstrated a model of wavelet function which can be utilized in
spherical domain; whereas, to find the approximate and detailed coefficients, any other wavelet
function can substitute it. An implementation of SWT is shown in Algorithm 1, illustrated in
Figure 3.



Algorithm 1: Implementation of the SWT

Step 1: Compute a multiresolution sphere.

Step 2: Computer the center of each face of the sphere.

Step 3: Load the image and precompute the local wavelet matrix using Eq.8-Eq.10.

Step 4: Initialize the forward transform for extracting the low-pass components from the orthogonal direction details in Step 3.
Step 5: Extract these low-pass components and create a matrix.

Step 6: Back store the coefficients.

Step 7: Calculate the Spherical Wavelet Coefficients.

Figure 3: Implementation of SWT algorithm
2.3 Discrete Wavelet Transform (DWT)

It is a well-known technique used for textural feature extraction. Considering this
technique, images were passed through an array of down-sampling filters. These down-sampling
filters are consisted of a series of low-pass and high-pass filters. The low-pass filters generate the
coefficients of approximation A[n], whereas high-pass filters generate the detail
coefficients D[n] (Sharma and Jain 2014). Mathematically, these coefficients are presented as;
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Where, g[2n-k] denotes low-pass filter’s transfer function, h[2n-k] denotes high-pass
filter’s transfer function, and x[k] characterizes the under considered image.

In this experiment, biorthogonal wavelets were utilized (Sudarshan et al. 2015). In these
wavelets, transformation of wavelet is invertible, however, it is not essentially orthogonal. In
contrast to orthogonal wavelets, biorthogonal wavelets have more degrees of freedom. The
wavelet’s first level generates an approximation coefficients A1, a vertical Dvi, diagonal Dds,
and horizontal Dh: detailed coefficients (Sharma and Jain 2014). Since the number of elements
are too high in the output of these matrices; for this reason, these outputs cannot be utilized
directly for computation. Accordingly, to reduce dimensionality, averaging techniques have been
derived as follows;
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Finally, the averaging method utilized not the values of intensity but averages; however,
it averages the intensity values’ energy which can be defined as follows;
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3. Classification
3.1 Linear Discriminant Classifier (LDC)

The underlying concept of linear classifier is that each of the object present in the
sequential pattern X 1, X2, ..., Xn is allocated to a class w1 or w2 which is based on threshold to.
This classifier can be mathematically presented as;
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Where, T denotes the weight vector. all linear classifiers principally work on this
concept. For all the samples in a single class, when o"™x + wo> 0 then the data is regarded as
linearly separable (Tharwat 2016).

3.2 Nearest Mean Classifier (NMC)

It is one of the most effective and simplest classifiers. Due to its computational
efficiency, it is simple, as it requires very little effort for computing the mean of the under
consideration classes. Every object present in the dataset is allocated to one of the classes, as
soon as the mean of the classes are figured at random (Poudel et al. 2013). Although, when the
data is well spread, NMC has found to be nominal, the data present in our research that is non-



linear does not give a good result because of the overlap between the means of numerous classes
under consideration.

3.3 Parzen Classifier (ParzenC)

These algorithms are based on the non-parametric estimation technique. In this technique,
the total histogram of a provided feature set is divided into a number of bins and estimate the
probability of a random sample associated with one specific bin. Parzen classifiers are based on
this classification process modeling the data into a multidimensional scale. This means that
rather than division of histogram into numerous bins, similar to the usual non-parametric
techniques, the n-dimensional space is separated into hyperccubes with a volume h! and side h
(Lesniak 2012). In this situation, the probability p“(x) of a single variable related to specific
hypercube can be described by;
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Where, ¢(xi) = 1 if Xi < Y2, whereas ¢ (xi) = 0 for any other value of xj, and xi= 1, 2....1are
the available feature vectors (Tharwat 2016).

3.4 Quadratic Discriminant Classifier (QDC)

It is commonly assumed in a classification problem that data can be described with the
help of Gaussian distribution in each class. Considering this assumption, a conclusion is drawn
about the classifier’s quadraticity and linearity, which depends on the data’s covariance matrices.
When the covariance matrices found to be different, a Quadratic Discriminant strategy is
followed; whereas Linear Discriminant strategy is followed if the covariance matrices become
equal (Tharwat 2016). In our research, the insinuation of this approach can be observed clearly,
as LDC underperforms QDC. This represent that there is more scope for linear classifiers as the
data is not linearly separable.

3.5 Support Vector Machine (SVM)

It is one of the most commonly used classifiers, while LDS are the driving force of
SVMs. For SVMs, the separations by hyperplanes can be represented as;
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Where, 1o represents threshold determined by above equation, ® denotes a weight vector,
while w1 and ®2 are the classes under consideration (Suykens et al. 2014). From the above
equation, it can be observed that it is an extension of the linear discriminant classifier. In a way,
it is different that the hyperplanes as a substitute of SVMs operate on the support vectors theory.
At this point, the location of the hyperplane can be determined by the vectors closest to the
separating hyperplanes. Additionally, in the case of non-linear data, the performance of DVMs is
appropriate because in the original data space, these classifiers do not discrete the data. Using
specific function such as kernels, it maps the original data into manageable space, which aid in
transforming non-linear data into linear data with the help of kernel functions (Suykens et al.
2014). In this research, a radial basis kernel is utilized for building our classifier. The kernel used
in this study is described as;
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Where, z and x represent the mean and object of the classes respectively, while ¢ denotes
standard deviation of the class. Binary classifiers were used in this research, and a majority vote
was utilized for extending it into a structure that is multi-class classification.

4. Results

This study provides a quantitative and comparative analysis of the utilization of SWT in
contrast to DWT. 67 mammographic images were used in this study, with analogous processing
performed on all the images. To extract the features, all the levels of sub-bands SWT and DWT
were utilized. Feature selection or ranking was not done because it is a well-established fact that
wavelet transformation‘s all sub-bands are significant, since information absent in a band is
found in another band. For both SWT and DWT, this characteristic is true. Table A shows a
sample of features for the mammograms three classes for SWT and DWT features.



Features Normal Benign Malignant
DWTAL 24FE+02=12E+02 17E+02+104E+02 26E+02=]15E+02
DWTD1 19E-03+£13E+01 -38E=01=119E+01 22E-06+13E=01
DWTH1 10E-02+34E+01 11E+00+326E+01 9.0E-04=335E+01
DWTH2 50E-02+10E+02 19E+00+823E+01 18E+00=+89E+02
DWTV1 -20E-02=43E+01 -13E=01=315E+01 -12E+01=22E+01
SWTAL S2E-01=+30E-04 14E-01+00E-04 1 SE+02 1 1E-03
SWID1 S82E+00=50E-03 66E+00=15E-04 1L7E-01 = 7.0E-04
SWTHL -§4E+00+13E+00 39E+00+17E+01 1353E+01=10E+02
SWTH2 S7E+02=134E-03 10E+01+36E-03 G68E+02=19E-0l
SWTVD 102E-02+50E-04 O1E+02+17E-02 20E+02+10E-01

Table A: Extracted significant features (Mean + SD). For all the features, the p-value is <
0.0001

The features’ data distribution that are obtained by SWT and DWT can be studied with
the help of empirical Cumulative Distributive Functions (eCDF), presented in Figure 5. This
technique of visualization has aided in better interpretation of variations in the features extracted
by SWT and DWT.
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Figure 4: Plots of Empirical Cumulative Distributive Functions (eCDF) for different
images

As this research emphasizes on a comparison of performance between SWT and DWT;
thus, no other techniques were utilized. By using DWT features in combination with SVM radial
basis classifier, 82.85% optimal classification accuracy was achieved. Likewise, with the help of
SWT features in combination with SVM radial basis classifier, an optimal accuracy of 89.90%
was attained. Using ten-fold cross validation, the performance of all the other classifiers in
average can be observed ion Table B.

Classifier DWT-accuracy (%) [Sensitivity (%), Specificity (%0)] SWT-accuracy (%) [Sensitivity (%), Specificity (%40)]

LDC 59.31 [60.94, 57.63] 69.26 [67.36, 71.16]
QDC 7567 [74.31, 77.03] T8.68 [77.12, 80.24]
NMC 5041 [62.10, 56.72] 68.38 [68.40. 60.36]
SVM 81.73[81.32,82.14] 88.30 [80.69.87.91]
ParzenC  54.03 [53.01, 55.10] 63.40 [62.10. 64.70]

In Figure 6, the application of SWT’s decomposition sub-bands on a sample image can
be observed. Furthermore, the results of all the ten-fold associated with the cross validation
scheme are presented in Figure 7 for DWT and in Figure 8 for SWT.
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Figure 6: DWT’s classification accuracy by ten-fold
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Figure 7: SWT’s classification accuracy by ten-fold
5. Discussion

Given the results regarding classification, it is evident that the performance and accuracy
level of SWT is better in contrast to DWT features. Since the main purpose of the study is to
determine the efficiency and effectiveness of the features owverall, rather than the targeted and
specific features; therefore, we did not select either feature selection of feature ranking for the
available features, whose results are presented in the earlier sections. It is significant to recognize
that the pots of eCDF of the feature sets extracted utilizing both SWT and DWT, illustrated a
good sign about the nature of the features acquired using each technique. We discuss with
respect to the data distribution for benign and normal images, for easy analysis of the results,
attained by using both techniques. At first glance, no difference can be observed in the
distributions, but it is proved that the differentiation provided by SWT is better than the DWT
features. This is also observed in figures, from Table A. in the table, the SWT features offered a
better differentiation range in contrast to DWT features. It is also observed that the classification
accuracy of SWT features is higher in comparison to the DWT features. SWT in combination
with other techniques of other textural feature extraction might aid in developing an innovative
set of texture features that would be good step for advancement of the CAD system.

Moreover, the data analysis in a different coordinate system pertaining to the actual
reference plane would assist in identifying the minute modifications and information that might
not be observable otherwise in a CAD system. In our view, this is a significant contribution of
the present work. In addition, the algorithm’s computational time is a vital point to consider. The
time required for computation of SWT and DWT is practically same. It a well-known fact that
DWT is an efficient algorithm with regard to real-time implementations due to the accurate
execution and speed in real-time applications.



Consequently, with SWT having superior classification accuracy in contrast to DWT, and
with time taken for calculation being almost same for SWT and DWT, SWT appears to be a
feasible substitute to DWT. Even it can be said that SWT is a better option in comparison to
DWT, particularly when wavelets have to be used. It can also be observed from Table A that the
change in standard deviation and mean values between malignant, benign, and normal
mammograms are much more differentiable in SWT features in contrast to DWT features. This
illustrated that small changes are better identified by utilizing SWT features.
Considering the classifiers, it is very considerable to note that classifiers have a major role in
drawing our conclusion, as QDC and SVM are the only classifiers that achieved good results
while other classifiers are relatively poor in performance. However, this inconsistency in
classifiers can be described through observing the data under consideration, which was non-
linear. That is the reason why ParzenC, NMC, and LMC were not effective because they are
utilized or linear data, whereas QDC and SVM perform much better because of their properties
to adjust to non-linear data. Furthermore, SVMs do not have the ability to classify nonO-liniear
data, rather this technique selects a mapping function that is kernel, so that it can map itself into a
linear space in which the classifier can carry out its function better (Suykens et al. 2014). A
radial basis kernel function was applied to the data in this study.

6. Conclusion

A comparable research has been conducted for finding the functional differences and variations
in the effectiveness between SWT and DWT techniques. In contrast to DWT, SWT has been
found to perform better in terms of identifying or capturing delicate differences in
mammographic images, as proved from the plots of eCDF of Feature sets. We have also
proposed that combination of SWT and SVM radial basis kernel provided a maximum accuracy
of 89.90%, whereas the combination of SVM radial basis kernel and DWT features gave a
maximum accuracy of 82.85%, in comparison to other classifiers. The utilization SWT for
analysis of medical images is in tis ini9tial stages and yet to be documented in literature with
restricted application in sharpening of the image. Considering the fact that SWT has performed
better when compared with DWT for classification of medical images as illustrated in the study,
there is a possibility of extending this technology to other modalities of medical images for
application in CAD.
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